Synthesis of new sulfur-linked di- and triheterocyclic compounds containing thienotriazolopyrimidine and triazolothiadiazole moieties

Yang-Heon Song^{1,*} and Jaewon Moon^{2,a}

 ¹Department of Chemistry, Mokwon University, Daejeon 302–729, South Korea
²Department of Biology, New York University, New York, NY 10003-6688, USA

*Corresponding author e-mail: yhsong@mokwon.ac.kr

Abstract

The synthesis of new sulfur-linked di- and triheterocyclic compounds containing thienotriazolopyrimdine and triazolothiadiazole systems with promising biological activity is described.

Keywords: cyclization; heterocyclic compound; sodium acetate; thienotriazolopyrimidine; triazolothiadiazole.

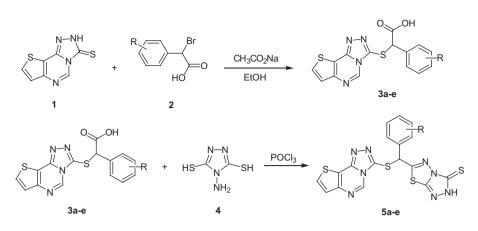
Introduction

Much attention has been recently paid to the synthesis of thieno-1,2,4-triazolopyrimidines and sulfur-containing 1,2,4triazoles (3-thio-1,2,4-triazoles) because of their biological activities and potential therapeutic use (Almajan et al., 2005; Contour-Galcéra et al., 2005; Nagamatsu et al., 2007; Prasad et al., 2008; Siwek et al., 2008; Guetzoyan et al., 2010). We previously designed and synthesized thienotriazolopyrimidine derivatives with promising biological activity (Jo et al., 2008; Song and Son, 2010, 2011). 1,2,4-Triazolo[3,4-b] [1,3,4]thiadiazole derivatives obtained by fusing 1,2,4triazole and the 1,3,4-thiadiazole ring together have been reported to possess antibacterial, antifungal, anti-inflammatory and analgesic effects as well as anticancer activity (Omar and Aboulwafa, 1986; Zhang and Sun, 1998; Bhat et al., 2004). We therefore designed the molecular combinations of a 1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole moiety and the thieno [1,2,4] triazolo [4,3-c]-pyrimidine system linked by a sulfur atom to produce novel di- and triheterocyclic derivatives using the concept of molecular hybridization (Viegas-Junior et al., 2007). In continuation of our recent synthetic work (Whang and Song, 2011), here we describe the synthesis of derivatives 5 and 7, the molecules of which are composed of the two and three heterocyclic systems mentioned above (Schemes 1 and 2).

Results and discussion

The required starting material thieno[2,3-e][1,2,4]triazolo [4,3-c]pyrimidine-3(2H)-thione (1) was prepared as reported in Song and Son (2010). Phenyl(thieno[2,3-e][1,2,4]triazolo-[4,3-c]pyrimidin-3-ylthio)acetic acid (3) and its derivatives were obtained in good yield by treatment of 1 with substituted α -bromophenylacetic acids 2 in refluxing ethanol in the presence of sodium acetate, as shown Scheme 1. The disappearance of characteristic peaks at 1200 (weak) and 3190 cm⁻¹ for the C=S and NH groups in the infrared spectrum and the lack of the signal for the proton of the NH(C=S) group near δ 14.0 in the ¹H nuclear magnetic resonance (NMR) spectrum indicated that the thione 1 was converted into the corresponding thioether 3a-e. The new sulfur-linked diheterocyclic compounds 5 were synthesized by condensation of compound 3 with 4-amino-4H-[1,2,4] triazole-3,5-dithiol (4) (Sandstörm, 1961) using phosphorus oxychloride as the cyclizing agent, as seen in Scheme 1 (Khalil, 2007). The structures of all new compounds were confirmed by elemental analyses and spectral [Mass (MS), ¹H-NMR, infrared] data.

The triheterocyclic compounds 7a-e are a new class of heterocycles. These compounds were prepared in moderate yield, as shown Scheme 2, by treatment of 5 with one of the chlorothienotriazolopyrimidines 6 (Whang and Song, 2011) in refluxing ethanol containing sodium acetate. The structure of product 7 was established on the basis of its spectral data and elemental analysis.


Experimental

Melting points were measured by using capillary tubes on Büchi apparatus and are uncorrected. The infrared spectra were recorded on the Fourier transform (FT)-IR Brucker Tensor 27. The ¹H NMR spectra were recorded on the Bruker DRX-300 FT-NMR spectrometer (300 MHz) in dimethyl sulfoxide (DMSO)- d_6 with Me₄Si as the internal standard. Electron impact mass spectra were recorded on an HP 59580 B spectrometer. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer.

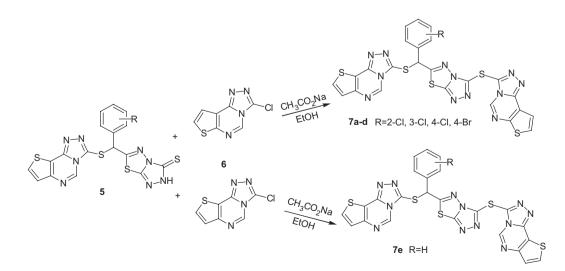
General procedure for the preparation of 3a-e

Anhydrous sodium acetate (2 mmol) was added to a solution of thieno[2,3-*e*][1,2,4]triazolo[4,3-*c*]pyrimidine-3(2*H*)-thione (1, 1.2 mmol) in ethanol (20 ml) with stirring at room temperature. After 5 min, an α -bromophenylacetic acid (2, 1.2 mmol) was slowly added in small portions and the resulting solution was heated at reflux for 6 h. After cooling, the resultant solid product was filtered, washed

^aParticipated as an undergraduate student.

a: R=H; b: R=2-Cl; c: R=3-Cl; d: R=4-Cl; e: R=4-Br

Scheme 1 Synthesis of 3a-e and 5a-e.


with water and purified by chromatography using Merck silica gel (70–230 mesh) and eluting with CHCl₃/MeOH (1:1).

Phenyl(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)acetic acid (3a) This compound was obtained in 62% yield; mp 200–203°C; ¹H NMR: δ 9.48 (s, 1H, H-5, pyrimidine), 8.24 (d, J=5.8 Hz, 1H, H-8, thiophene), 7.65 (d, J=5.8 Hz, 1H, H-7, thiophene), 7.56 (m, 2H, Ar), 7.35–7.16 (m, 3H, Ar), 5.36 (s, 1H, benzyl); MS: m/z 342 (M⁺), 324, 298, 265, 208, 135, 121. Analysis calculated for C₁₅H₁₀N₄O₂S₂: C, 52.62; H, 2.94; N, 16.36. Found: C, 52.55; H, 2.76; N, 16.49.**

2-Chlorophenyl(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (3b) This compound was obtained in 71% yield; mp 237–239°C; ¹H NMR: δ 9.44 (s, 1H, H-5, pyrimidine), 8.26 (d, *J*=5.8 Hz, 1H, H-8, thiophene), 7.70 (d, *J*=5.8 Hz, 1H, H-7, thiophene), 7.66 (d, 1H, Ar), 7.58 (d, 1H, Ar), 7.35–7.23 (m, 2H, Ar), 5.80 (s, 1H, benzyl); MS: m/z 376 (M⁺), 331, 297, 208, 135. Analysis calculated for C₁₅H₉ClN₄O₂S₂: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.93; H, 2.51; N, 14.80. **3-Chlorophenyl(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (3c)** This compound was obtained in 59% yield; mp 232–235°C; ¹H NMR: δ 9.47 (s, 1H, H-5, pyrimidine), 8.24 (d, *J*=5.8 Hz, 1H, H-8, thiophene), 7.65 (d, *J*=5.8 Hz, 1H, H-7, thiophene), 7.58 (s, 1H, Ar), 7.43 (m, 1H, Ar), 7.30–7.21 (m, 2H, Ar), 5.30 (s, 1H, benzyl), MS: m/z 376 (M⁺), 332, 299, 264, 182, 125, 66. Analysis calculated for C₁₅H₉ClN₄O₂S₂: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.70; H, 2.51; N, 14.79.

4-Chlorophenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (3d) This compound was obtained in 55% yield; mp 103–105°C; ¹H NMR: δ 9.56 (s, 1H, H-5, pyrimidine), 8.30 (d, *J*=5.8 Hz, 1H, H-8, tahiophene), 7.71 (d, *J*=5.8 Hz, 1H, H-7, thiophene), 7.58 (d, 2H, Ar), 7.40 (d, 2H, Ar), 5.60 (s, 1H, benzyl); MS: m/z 376 (M⁺), 332, 299, 208, 155, 135, 125, 89, 77. Analysis calculated for $C_{15}H_9CIN_4O_2S_2$: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.64; H, 2.34; N, 14.94.

4-Bromophenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (3e) This compound was obtained in 53%

yield; mp 248–250°C; ¹H NMR: δ 9.46 (s, 1H, H-5, pyrimidine), 8.23 (d, *J*=5.8 Hz, 1H, H-8, thiophene), 7.72 (d, *J*=5.8 Hz, 1H, H-7, thiophene), 7.48 (d, 2H, Ar), 7.38 (d, 2H, Ar), 5.26 (s, 1H, benzyl); MS: m/z 421 (M⁺), 332, 297, 264, 177, 155, 135, 125, 83. Analysis calculated for C₁₅H₉BrN₄O₂S₂: C, 42.76; H, 2.15; N, 13.30. Found: C, 42.62; H, 2.10; N, 13.41.

General procedure for the preparation of 5a-e

A mixture of 4-amino-4H-1,2,4-triazole-3,5-dithiol (4, 6.7 mmol) and the appropriate carboxylic acid **3a–e** (6.7 mmol) in phosphorus oxychloride (10 ml) was heated at reflux for 10 h. The excess phosphorus oxychloride was removed under reduced pressure, and the residue was treated with ice-water mixture. The precipitated solid was filtered, washed several times with water, dried at room temperature, and crystallized from dimethylformamide (DMF).

6-[Phenyl(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl]-2***H***-[1,2,4]triazolo[3,4-***b***][1,3,4]thiadiazole-3-thione (5a) This compound was obtained in 48% yield; mp 160–162°C; ¹H NMR: δ 9.50 (s, 1H, H-5, pyrimidine), 8.29 (d,** *J***=5.8 Hz, 1H, H-8, thiophene), 7.71 (d,** *J***=5.8 Hz, 1H, H-7, thiophene), 7.55 (d, 2H, Ar), 7.38–7.21 (m, 3H, Ar), 5.82 (s, 1H, benzyl); MS: m/z 454 (M⁺), 297, 177, 135, 77. Analysis calculated for C_{17}H_{10}N_8S_4: C, 44.92; H, 2.22; N, 24.65. Found: C, 44.76; H, 2.15; N, 24.56.**

6-[(2-Chlorophenyl)(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl]-2***H***-[1,2,4]triazolo[3,4-***b***][1,3,4]thiadiazole-3-thione (5b) This compound was obtained in 49% yield; mp 110–112°C; ¹H NMR: \delta 9.54 (s, 1H, H-5, pyrimidine), 8.27 (d,** *J***=5.8 Hz, 1H, H-8, thiophene), 7.65 (d,** *J***=5.8 Hz, 1H, H-7, thiophene), 7.57 (m, 1H, Ar), 7.48 (m, 1H, Ar), 7.36–7.30 (m, 2H, Ar), 6.00 (s, 1H, benzyl); MS: m/z 488 (M⁺), 341, 332, 297, 264 177, 155, 135. Analysis calculated for C₁₇H₉ClN₈S₄: C, 41.75; H, 1.86; N, 22.91. Found: C, 41.90; H, 1.94; N, 22.84.**

6-[(3-Chlorophenyl)(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl]-2***H***-[1,2,4]triazolo[3,4-***b***][1,3,4]thiadiazole-3-thione (5c) This compound was obtained in 55% yield; mp 180–182°C; ¹H NMR: \delta 9.53 (s, 1H, H-5, pyrimidine), 8.25 (d,** *J***=5.8 Hz, 1H, H-8, thiophene), 7.64 (d,** *J***=5.8 Hz, 1H, H-7, thiophene), 7.54 (s, 1H, Ar), 7.44 (m, 1H, Ar), 7.27–7.20 (m, 2H, Ar), 5.88 (s, 1H, benzyl); MS: m/z 488 (M⁺), 332, 297, 208, 155, 135, 77. Analysis calculated for C₁₇H₉ClN₈S₄: C, 41.75; H, 1.86; N, 22.91. Found: C, 41.60; H, 1.91; N, 22.99.**

6-[(4-Chlorophenyl)(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl]-2***H***-[1,2,4]triazolo[3,4-***b***][1,3,4]thiadia zole-3-thione (5d)** This compound was obtained in 66% yield; mp 185–187°C; ¹H NMR: δ 9.59 (s, 1H, H-5, pyrimidine), 8.32 (d, *J*=5.9 Hz, 1H, H-8, thiophene), 7.72 (d, *J*=5.9 Hz, 1H, H-7, thiophene), 7.58 (d, 2H, Ar), 7.41 (d, 2H, Ar), 5.78 (s, 1H, benzyl); MS: m/z 488 (M⁺), 332, 297, 177, 155, 135. Analysis calculated for C₁₇H₉ClN₈S₄: C, 41.75; H, 1.86; N, 22.91. Found: C, 41.90; H, 1.94; N, 22.99.

6-[(4-Bromophenyl)(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl]-2H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole-3-thione (5e) This compound was obtained in 48% yield; mp 185–187°C; ¹H NMR: δ 9.48 (s, 1H, H-5, pyrimidine), 8.24 (d, *J*=5.8 Hz, 1H, H-8, thiophene), 7.72 (d, *J*=5.8 Hz, 1H, H-7, thiophene), 7.50 (d, 2H, Ar), 7.40 (d, 2H, Ar), 5.70 (s, 1H, benzyl); MS: m/z 533 (M⁺), 375, 177, 135. Analysis calculated for $C_{17}H_9BrN_8S_4$: C, 38.27; H, 1.70; N, 21.00. Found: C, 38.39; H, 1.77; N, 21.16.

General procedure for the preparation of 7a-e

A suspension of anhydrous sodium acetate (15 mmol), a chlorothienopyrimidine **6** (10 mmol) and the appropriate diheterocyclic compound **5** (10 mmol) in ethanol (30 ml) was heated under reflux for 6–8 h. After cooling, the resultant solid product was filtered, washed with water and crystallized from ethanol.

3-{6-[(2-Chlorophenyl)(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl][1,2,4]triazolo[3,4-***b***][1,3,4]thiadiazol-3-ylthio}thieno[3,2-***e***][1,2,4]triazolo[4,3-***c***]pyrimidine (7a) This compound was obtained in 38% yield; mp 121–123°C; ¹H NMR: \delta 9.69 (s, 1H), 9.48 (s, 1H), 8.27 (d,** *J***=5.8 Hz, 1H), 8.09 (d,** *J***=5.8 Hz, 1H), 7.83 (d,** *J***=5.8 Hz, 1H), 7.65 (d,** *J***=5.8 Hz, 1H), 7.62 (d, 1H), 7.54 (1, 2H), 7.40 (m, 2H), 6.09 (s, 1H); MS: m/z 662 (M⁺), 330, 175, 135. Analysis calculated for C₂₄H₁₁ClN₁₂S₅: C, 43.46; H, 1.67; N, 25.34. Found: C, 43.22; H, 1.79; N, 25.15.**

3-{6-[(3-Chlorophenyl)(thieno[2,3-*e***][1,2,4]triazolo[4,3-***c***]pyrimidin-3-ylthio)methyl][1,2,4]triazolo[3,4-***b***][1,3,4]thiadiazol-3ylthio}thieno[3,2-***e***][1,2,4]triazolo[4,3-***c***]pyrimidine (7b) This compound was obtained in 33% yield; mp 115–117°C; ¹H NMR: \delta 9.67 (s, 1H), 9.49 (s, 1H), 8.24 (d,** *J***=5.8 Hz, 1H), 8.08 (d,** *J***=5.8 Hz, 1H), 7.83 (d,** *J***=5.8 Hz, 1H), 7.65 (d,** *J***=5.8 Hz, 1H), 7.52 (s, 1H), 7.47 (m, 2H), 7.30 (m, 2H), 5.71 (s, 1H); MS: m/z 662 (M⁺), 330, 175, 135, 66. Analysis calculated for C₂₄H₁₁ClN₁₂S₅: C, 43.46; H, 1.67; N, 25.34. Found: C, 43.34; H, 1.59; N, 25.20.**

3-{6-[(4-Chlorophenyl)(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl][1,2,4]triazolo[3,4-*b***][1,3,4]thiadiazol-3-ylthio}thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine (7c) This compound was obtained in 44% yield; mp 158–160°C; ¹H NMR: δ 9.71 (s, 1H), 9.56 (s, 1H), 8.30 (d,** *J***=5.8 Hz, 1H), 8.12 (d,** *J***=5.8 Hz, 1H), 7.85 (d,** *J***=5.8 Hz, 1H), 7.71 (d,** *J***=5.8 Hz, 1H), 7.56 (d, 2H), 7.38 (d, 2H), 5.82 (s, 1H); MS: m/z 662 (M⁺), 330, 175, 135. Analysis calculated for C_{24}H_{11}CIN_{12}S_5: C, 43.46; H, 1.67; N, 25.34. Found: C, 43.55; H, 1.55; N, 25.26.**

3-{6-[(4-Bromophenyl)(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl][1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazol-3-ylthio}thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine (7d) This compound was obtained in 30% yield; mp 138–140°C; ¹H NMR: δ 9.64 (s, 1H), 9.46 (s, 1H), 8.23 (d, *J*=5.8 Hz, 1H), 8.09 (d, *J*=5.8 Hz, 1H), 7.83 (d, *J*=5.8 Hz, 1H), 7.72 (d, *J*=5.8 Hz, 1H), 7.47 (d, 2H), 7.31 (d, 2H), 5.46 (s, 1H); MS: m/z 706 (M⁺), 375, 175, 135. Analysis calculated for $C_{24}H_{11}BrN_{12}S_5$: C, 40.73; H, 1.57; N, 23.75. Found: C, 40.59; H, 1.42; N, 23.66.

3-{6-[Phenyl(thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)-methyl][1,2,4]triazolo[3,4-*b***][1,3,4]thiadiazol-3-ylthio} thieno-[2,3-e][1,2,4]triazolo[4,3-c] pyrimidine (7e)** This compound was obtained in 36% yield; mp 102–105°C; ¹H NMR (DMSO-*d*₆): δ 9.61 (s, 1H), 9.49 (s, 1H), 8.30 (d, *J*=5.8 Hz, 1H), 8.24 (d, *J*=5.8 Hz, 1H), 7.69 (d, *J*=5.8 Hz, 1H), 7.65 (d, *J*=5.8 Hz, 1H), 7.34–7.17 (m, 5H), 5.45 (s, 1H); MS: m/z 628 (M⁺), 297, 175, 135. Analysis calculated for C₂₄H₁₂N₁₂S₅: C, 45.85; H, 1.92; N, 26.73. Found: C, 45.66; H, 2.01; N, 26.56.

Acknowledgements

This work was supported by the Korea Research Foundation (project number 2010-0021038).

References

- Almajan, G. L.; Innocenti, A.; Puccetti, L.; Manole, G.; Barbuceanu, S.; Saramet, I.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors. Inhibition of the cytosolic and tumor-associated carbonic anhydrase isozymes I, II, and IX with a series of 1,3,4thiadiazole- and 1,2,4-triazole-thiols. *Bioorg. Med. Chem. Lett.* 2005, 15, 2347–2352.
- Bhat, K. S.; Prasad, D. J.; Poojary, B.; Holla, B. S. Synthesis of some new 1,2,4-triazolo[3,4-b]thiadiazole derivatives as possible anticancer agents. *Phosphorus Sulfur and Silicon* 2004, *179*, 1595–1603.
- Contour-Galcéra, M. O.; Sidhu, A.; Plas, P.; Roubert, P. 3-Thio-1,2,4-triazoles, novel somatostatin sst2/sst5 agonists. *Bioorg. Med. Chem. Lett.* 2005, 15, 3555–3559.
- Guetzoyan, L. J.; Spooner, R. A.; Lord, J. M.; Roberts, L. M.; Clarkson, G. J. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. *Eur. J. Med. Chem.* **2010**, *45*, 275–283.
- Jo, B. S.; Son, H. Y.; Song, Y. H. A mild and efficient synthesis of new 3-phenyl-thienotriazolopyrimidine derivatives using iodobenzene diacetate. *Heterocycles* 2008, 75, 3091–3097.
- Khalil, N. S. A. M. N- and S-alpha-l-arabinopyranosyl[1,2,4] triazolo[3,4-b][1,3,4]thiadi-azoles. First synthesis and biological evaluation. *Eur. J. Med. Chem.* 2007, 42, 1193–1199.
- Nagamatsu, T.; Ahmed, S.; Hossion, A. M. L.; Ohno, S. Synthesis of thieno[3,2-e][1,2,4] triazolo[1,5-c]pyrimidin-5(6H)-ones via their [1,2,4]triazolo[4,3-c]pyrimidine compounds as new ring systems by Dimroth-type rearrangement. *Heterocycles* 2007, 73, 777–793.

- Omar, A. M. M. E.; Aboulwafa, O. M. Synthesis and in vitro antimicrobial and antifungal properties of some novel 1,3,4-thiadiazole and s-triazolo[3,4-b][1,3,4]thiadiazole derivatives. J. Heterocycl. Chem. 1986, 23, 1339–1341.
- Prasad, M. R.; Rao, A. R.; Rao, P. S.; Rajan, K. S.; Meena, S.; Madhavi, K. Synthesis and adenosine receptor binding studies of some novel triazolothienopyrimidines. *Eur. J. Med. Chem.* 2008, 43, 614–620.
- Sandstörm, J. Cyclizations of thiocarbohydrazide and its monohydrazones. Part III. Reactions with carbon disulphide in pyridine. *Acta Chem. Scand.* 1961, 15, 1295–1302.
- Siwek, A.; Wujec, M.; Dobosz, M.; Jagiełło-Wójtowicz, E.; Chodkowska, A.; Kleinrok, A.; Paneth, P. Synthesis and pharmacological properties of 3-(2-methylfuran-3-yl)-4substituted-Δ²-1,2,4-triazoline-5-thiones. *Cent. Eur. J. Chem.* 2008, 6, 47–53.
- Song, Y. H.; Son, H. Y. Synthesis of new 1-phenylthieno[1,2,4] triazolo[4,3-a]pyrimidin-5(4H)-one derivative. J. Heterocycl. Chem. 2011, 48, 597–603.
- Song, Y. H.; Son, H. Y. Synthesis of new sulfur-linked 1,2,4-triazolothienopyrimidine and 1,2,4-triazolopyrazolopyrimidine derivatives containing fused heterocyclic pyrimidines. J. Heterocycl. Chem. 2010, 47, 1183–1187.
- Viegas-Junior, C.; Danuello, A.; Bolzani, V. S.; Barreiro, E. J.; Fraga, C. A. M. Molecular hybridization: a useful tool in the design of new drug prototypes. *Curr. Med. Chem.* 2007, *14*, 1829–1852.
- Whang, J.; Song, Y.-H. Synthesis of novel thienotriazolopyrimidine derivatives containing triazolothiadiazole moiety. J. Heterocycl. Chem. 2011, in press.
- Zhang, Z. Y.; Sun, X. W. s-Triazolo[3,4-b]-1,3,4-thiadiazole derivatives. *Heterocycles* 1998, 48, 561–584.

Received July 20, 2011; accepted July 29, 2011